Firing and cellular properties of V2a interneurons in the rodent spinal cord.
نویسندگان
چکیده
Previous studies have shown that a group of ventrally located neurons, designated V2a interneurons, play a key role in maintaining locomotor rhythmicity and in ensuring appropriate left-right alternation during locomotion (Crone et al., 2008, 2009). These V2a interneurons express the transcription factor Chx10. The aim of the present study was to characterize the locomotor-related activity of individual V2a interneurons, their cellular properties, and their detailed anatomical attributes in Chx10-GFP mice. A dorsal horn-removed preparation was developed to allow for visual whole-cell patch recordings from V2a interneurons along the entire lumbar spinal cord while at the same time leaving enough of the spinal cord intact to generate fictive locomotion. During drug-evoked locomotor-like activity, a large proportion of Chx10 cells showed rhythmic firing or membrane potential fluctuations related to either flexor or extensor activity in every lumbar segment. Chx10 cells received predominantly rhythmic excitatory input. Chx10 neurons displayed a wide variety of firing and potential rhythmogenic properties. However, none of these properties was obviously related to the observed rhythmicity during locomotor-like activity. In dual recordings, we found no evidence of Chx10 neuron interconnectivity. Intracellular fills revealed diverse projection patterns with most Chx10 interneurons being local with projections to the central pattern generator and motor neuron regions of the spinal cord and others with long ascending and/or descending branches. These data are compatible with V2a neurons having a role in regulating segmental left-right alternation and ipsilateral motor neuron firing with little effect on rhythm generation.
منابع مشابه
Electrophysiological characterization of V2a interneurons and their locomotor-related activity in the neonatal mouse spinal cord.
The V2a class of Chx10-expressing interneurons has been implicated in frequency-dependent control of left-right phase during locomotion in the mouse. We have used the Chx10::CFP mouse line to further investigate the properties and locomotion-related activity of V2a interneurons in the isolated neonatal spinal cord. V2a interneurons can be divided into three classes, based on their tonic, phasic...
متن کاملAdult spinal V2a interneurons show increased excitability and serotonin-dependent bistability.
In mice, most studies of the organization of the spinal central pattern generator (CPG) for locomotion, and its component neuron classes, have been performed on neonatal [postnatal day (P)2-P4] animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often argued that the CPG network is in an immature form whose detailed properties mature with postnatal development....
متن کاملAdult spinal V 2 a interneurons show increased excitability and 2
24 In mice, most studies of the organization of the spinal central pattern generator (CPG) for 25 locomotion, and its component neuron classes, have been performed on neonatal (P2-P4) 26 animals. While the neonatal spinal cord can generate a basic locomotor pattern, it is often 27 argued that the CPG network is in an immature form whose detailed properties mature with 28 postnatal development. ...
متن کاملGenetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord
The initiation and coordination of activity in limb muscles are the main functions of neural circuits that control locomotion. Commissural neurons connect locomotor circuits on the two sides of the spinal cord, and represent the known neural substrate for left-right coordination. Here we demonstrate that a group of ipsilateral interneurons, V2a interneurons, plays an essential role in the contr...
متن کامل07-P010 LMO4 controls the balance between excitatory and inhibitory spinal V2 interneurons
Multiple excitatory and inhibitory interneurons form the motor circuit with motor neurons in the ventral spinal cord. Notch signaling initiates the diversification of immature V2-interneurons into excitatory V2a-interneurons and inhibitory V2b-interneurons. Here, we provide a transcriptional regulatory mechanism underlying their balanced production. LIM-only protein LMO4 controls this binary ce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2010